Question 1:
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
We know that,
will always be positive as we are adding two positive quantities.
Therefore,
We know that,
However,
Therefore,
Also,
will always be positive as we are adding two positive quantities.
Therefore,
We know that,
However,
Therefore,
Also,
Question 2:
Write all the other trigonometric ratios of ∠A in terms of sec A.
Question 3:
Evaluate
(ii) sin25° cos65° + cos25° sin65°
(i)
(As sin2A + cos2A = 1)
= 1
(ii) sin25° cos65° + cos25° sin65°
= sin225° + cos225°
= 1 (As sin2A + cos2A = 1)
(As sin2A + cos2A = 1)
= 1
(ii) sin25° cos65° + cos25° sin65°
= sin225° + cos225°
= 1 (As sin2A + cos2A = 1)
Question 4:
Choose the correct option. Justify your choice.
(i) 9 sec2 A − 9 tan2 A =
(A) 1
(B) 9
(C) 8
(D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ − cosec θ)
(A) 0
(B) 1
(C) 2
(D) −1
(iii) (secA + tanA) (1 − sinA) =
(A) secA
(B) sinA
(C) cosecA
(D) cosA
(A) sec2 A
(B) −1
(C) cot2 A
(D) tan2 A
(i) 9 sec2A − 9 tan2A
= 9 (sec2A − tan2A)
= 9 (1) [As sec2 A − tan2 A = 1]
= 9
Hence, alternative (B) is correct.
(ii)
(1 + tan θ + sec θ) (1 + cot θ − cosec θ)
Hence, alternative (C) is correct.
(iii) (secA + tanA) (1 − sinA)
= cosA
Hence, alternative (D) is correct.
(iv)
Hence, alternative (D) is correct.
= 9 (sec2A − tan2A)
= 9 (1) [As sec2 A − tan2 A = 1]
= 9
Hence, alternative (B) is correct.
(ii)
(1 + tan θ + sec θ) (1 + cot θ − cosec θ)
Hence, alternative (C) is correct.
(iii) (secA + tanA) (1 − sinA)
= cosA
Hence, alternative (D) is correct.
(iv)
Hence, alternative (D) is correct.